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EXECUTIVE SUMMARY 

The traditional engineering approach to the study of feedback control systems is 
to (1) open the feedback loop, (2) manipulate the control system inputs, (3) 
simultaneously measure the corresponding outputs, and then (4) construct a set of 
control system equations. This direct method is generally ineffective for the study of 
physiological control systems, however, because it is not possible to open the feedback 
loop without affecting system behavior, and it is difficult (and sometimes impossible) to 
measure all the control system inputs and outputs. Attempts to model the passive and 
control systems using mathematical equations and then to optimize the parameter 
values in the control system equations have also failed. These failures may be 
attributed to inadequate control system equations, or to data ranges that were too 
narrow to develop generalized models. 

This report presents a feasibility study in which a hybrid model, consisting of an 
artificial neural network model of the control system and a mathematical model of the 
passive system, is used for control system identification. This approach offers several 
significant potential advantages over traditional methods; feedback loops do not need 
to be opened, small numbers of system variables, from the passive and/or control 
systems, may be used to optimize control system parameters, and control system 
equations do not need to be pre-specified. Artificial (model) systems are used in this 
feasibility study because both the passive and control systems are "known" and thus 
the accuracy and repeatability of the hybrid model approach may be accurately 
assessed. 

Four artificial systems were developed. These include (1) a simple water bath 
system with a proportional (linear) controller, (2) a simple water bath system with a 
nonlinear (nested hyperbolic tangent) controller, (3) a single-link (nonlinear) robot arm 
model, and (4) a 2-link robot arm model. "Observed" data were generated using these 
model systems by simulating the response to a simulated perturbation. 

A hybrid model, consisting of a mathematical model of the known passive 
system, and a feedforward neural network representing the control system, was then fit 
to the observed data. Fitting the model to the observed data consisted of initializing 
neural network connection weights to random values between -1 and +1, then adjusting 
the weights to reduce the error between observed and predicted data. The fitting 
procedure was repeated three times for each number of hidden layer nodes and each 
set of conditions. 

The number of hidden layer nodes (2-3) that were required to simulate the 
artificial model systems was relatively small. It was possible to successfully simulate 
the artificial systems while excluding one or more of the system variables from the 
observed (training) data set. The methodology proved to be robust. The hybrid model 
was able to successfully simulate the artificial systems when errors (± 10% variance) 
were introduced into the observed data set and also when errors (± 10% variance) were 
introduced into the passive system parameter values. 



INTRODUCTION 

The classical description of physiological feedback control (5) incorporates both 
passive and control system components (Figure 1). The passive system includes the 
chemical, electrical and mechanical relationships within the system. The control system 
relates changes in one or more "controlled" variables to changes in one or more 
"effector" mechanisms. In complex biological systems, the relationships between 
controlled variables and effector mechanisms that make up the control system are 
typically difficult to identify. 

Setpoints 

-Acontrolled—► 

-K Z 

Control System     < 

Aeffectors 

Passive System 

Figure 1. Classical feedback control system diagram. 

The engineering approach to the study of feedback control systems is to (1) 
open the feedback loop, (2) manipulate the control system inputs, (3) simultaneously 
mfeasure the corresponding outputs, then (4) construct a set of control system 
equations. This direct method is often ineffective for the study of physiological control 
systems, however, because it is not possible to open the feedback loop without 
affecting system behavior, and it is difficult (and sometimes impossible) to measure all 
the control system inputs and outputs. 

Another approach is to develop a mathematical model of the passive and control 
systems, and to fit this model to observed data, optimizing control system parameter 
values. This approach requires that the form of the control system equations be 
specified in advance. This approach has had only limited success either because the 
set of control system equations is inadequate, or the range of conditions over which the 
model was fit was too narrow. 

An alternative approach, presented in this report, consists of developing a 
mathematical model of the passive system and using an adaptive neural network to 
model the control system (Figure 2). Neural networks can emulate a wide variety of 
linear and nonlinear system behavior, utilizing a high degree of interaction among input 
variables. However, the neural network models must be "trained" to emulate specific 
systems. This training procedure is equivalent to other types of linear and nonlinear 
model fitting or parameter optimization techniques. However, as will be shown below, 
compared to these techniques, the neural network provides greater variety and levels of 



complexity by considering not only sums of nonlinear functions, but recursive nonlinear 
functions as well (e.g., the sigmoid of a sigmoid function). When the hybrid model is fit 
to observed data, the neural network connection weights are the parameter values 
undergoing optimization. The potential advantages of this method over the classical 
engineering approach are that (1) feedback loops do not need to be opened, (2) small 
numbers of system variables, from the passive and/or control systems, may be used to 
optimize control system equations, and (3) control system equations do not need to be 
pre-specified. 

~0 
A 

Neural Network 
Control System 

Aeffe ctors 

Setpoints 
t 

weights 
1 

Comparer 

i ,         i L 

r—"predicted- -"observed" Measured Data 

Passive System 

Figure 2. Model fitting or "training" scheme for the hybrid model. 

The hybrid model approach has not previously been utilized for the simulation of 
physiological control systems. However, hybrid models have been used in the 
simulation of nonlinear engineering control systems in which both the control system 
inputs and the control system outputs are measurable (1, 8). Neural networks used for 
the real time control of robotic manipulators (2, 3, 4, 6, 7, 10), processing plants (11) 
and other nonlinear systems often use traditional mathematical passive system models 
during neural network training. Neural networks are advantageous in these applications 
because the control system is adaptable, through on-line training, and is able to 
compensate for changes in the operation of the physical plant (e.g., the mechanical 
robot) due to wear or malfunction of machine parts or changes in the physical 
environment. The success of neural networks in these nonlinear and control system 
engineering applications bodes well for their usefulness in the simulation of 
physiological control systems 

The specific objectives of this report are to present the development and 
implementation a hybrid neural network/mathematical model and the results of 
feasibility testing using artificial (model) control systems. Artificial control systems, with 
known control system equations, are studied as part of the feasibility testing to (1) 



determine the accuracy and repeatability of the hybrid model approach, (2) estimate the 
neural network architecture required to solve different control system identification 
problems, and (3) determine the effects of errors in the observed data and in passive 
system parameter values. 

MATERIALS AND METHODS 

ARTIFICIAL MODEL SYSTEM DEVELOPMENT 
Four different artificial systems (represented by mathematical models) of 

increasing levels of complexity were developed and implemented in the C/C++ 
programming language. The first two represent water bath systems. The first of these 
uses a proportional (linear) controller, and the second uses a nested hyperbolic tangent 
function. The two other model systems represent nonlinear 1- and 2-link robot arms. 
Simple schematics, passive- and control-system equations for these systems are 
presented in Figures 3-6. Observed data were generated using these model systems 
by recording the response to a simulated perturbation. 

For the water bath systems, (Figures 3-4), the passive system describes the 
response in the temperature of the system to changes in heat generation (H) and 
ambient temperature (Ta). The control system is responsible for adjusting H so that T 
is maintained at a certain "set-point" temperature, Tset. The input to the control system 
is the temperature T; the output is the rate of heat generation, H. Control and passive 
system parameter values were selected arbitrarily. The baseline rate of heat 
generation, Ho, was computed so that T remained at Tset unless perturbed. In two 
simulated experiments, the value of Ta was abruptly changed from a "neutral" value of 
21 to values of 0 and 42, respectively. The responses of the system variables T and H 
were recorded over time. 

h(T-Ta) 

variables: 

T=System Temperature 

Ta=Environmenta! Temperature 

h = Heat Transfer Coefficient (0.3) 

k = Control System Gain (0.17) 

H = Heat Generation (H0=4.2) 

Tset=Required Temperature (35.0) 

Ho = Heat Generation at (T=Tset) 

t = Time 

Control System 

H = H,, - k(T-Tset) 
'effector* 
variable (H) 

Passive System 

dT/dt = H-h(T-Ta) 

'observed' 
data (T,H) 

'controlled' variable (T) 

Figure 3. Single-input, single-output water bath system 
with linear (proportional) controller. 



h(T-Ta) 

variables: 

T=System Temperature 

Ta=Environmental Temperature 

h = Heat Transfer Coefficient (0.3) 

H = Heat Generation (H (f=4.2) 

Tset=Required Temperature (35.0) 

Ho = Heat Generation at (T= Tset) 

t = Time 

Control System 

H0*tanh(0.25*tanh 
(0.05*(T-Tset))) 

'effector 
variable 

Passive System 
dT/dt = H^h(T-Ta) 

'observe 
data 

'controlled' variable 

Figure 4. Single-input, single-output water bath system 
with nonlinear controller. 

For the 1- and 2-link robot arm models (Figures 5-6), the passive system 
describes the responses of link angle (A) and angular velocity (V) to changes in torque 
(T). The variables A, V, and 1 are vectors, one element per link. The control system 
is responsible for adjusting Tso that A is maintained at the required or set point angles. 
The inputs to the control system are A and V; the output is T. As in the water bath 
systems, the control and passive system parameter values were selected arbitrarily. 
Eight experiments were conducted in which the robot arm(s) were perturbed from their 
neutral positions, and the responses of the variables A, V, and Twere recorded over 
time. 



4fe 
variables: 

A=Link Angle 

T=Torque 

V=Angular Velocity 

R=Required Angle (90 degrees) 

t = Time 

Control System 

T=9(R-A)-4V-10sinA 

'effector' 

variable CO 

Passive System 
dA/dt=V 

dV/dt=10sinA-2V+T 

'observed' 
data (A, V, X) 
 ► 

'controlled' variables (A, V) 

Figure 5. Single-link, nonlinear robot arm model. 

Link 2 variables: 

A=Link Angle (from vertical for 

Linkl) 

X=Torque 

V=AnguIar Velocity 

R=Required Angle (90 for Link 1, 

0 for Link 2) 

t = time 

Control System 

.^(Rj-AjMV^lÖsiriA, 

tl=-.S(R1-A1)-.SV2 

'effector' 
variables 

(X„ T2) 

Passive System 
dA^dt^, 

dV/dt^OsinA.^V.+T, 
dAj/dl=V2 

dV^dt=0.9*T,rl^*V,-.O.OS«Aj 

'observed' 
data (A,, A2) 

'controlled' variables (A, A, V,, V,) 

Figure 6. 2-link, nonlinear robot arm model. 

NEURAL NETWORK CONTROL SYSTEM ARCHITECTURE 
A feedforward neural network was utilized in this study. The feedforward neural 

network is made up of a number of nodes organized into layers. The term feedforward 
refers to the fact that outputs from the nodes in one layer are fed forward to become the 
inputs of the nodes in the next layer. The first layer is designated as the input layer and 
consists of normalized input values corresponding to the "controlled" variables in the 
system (e.g., T for the water bath systems, and A and V for the robot arm models). 
Each input value is normalized to the range -1 to +1. The middle layers are designated 



as "hidden" layers and consist of one or more processing elements (PEs) that take a 
weighted sum of their inputs and pass them through a nonlinear function. The last layer 
in the network is designated as the output layer, and consists of additional PEs that 
produce normalized values for the "effector" variables in the system (e.g., H for the 
water bath systems and T for the robot arm models). "Bias" nodes in the input and 
hidden layers are similar to input layer nodes, but are set to constant values of 1.0. 
These nodes may be used to provide constant input values to the hidden and output 
layers, respectively. An example of a feedforward neural network with three nodes in 
the input layer, three nodes in the middle or "hidden" layer, and one node in the output 
layer, is shown in Figure 7. 

Figure 7. Simple neural network with 3 input PEs, 3 hidden 
PEs, and one output PE. 

Each of the processing elements that make up the middle and output layers relates the 
weighted sum of its inputs (Xj), through a monotonic nonlinear function, to a single 
output (y). A typical processing element is shown in Figure 8. 

->   output (y) 

Figure 8. Typical processing element (PE). 

The weights, Wj, are referred to as "connection weights." It is the connection weights 
that are modified during network training. The relationship between the weighted sum, 
x=ZWiXi, and the PE output, y, is typically represented either by the sigmoid function: 



y=- 

or the tanh function: 

l + e' 

y = tanh(jc) 

NEURAL NETWORK TRAINING 
Neural network training consists of adjusting connection weights until some 

performance criteria is met. Figure 9 shows a traditional training scheme. Outputs from 
the neural network are compared to "desired" outputs and some kind of error term is 
generated. Neural network connection weights are then adjusted in an attempt to 
minimize this error term. 

-input(s) output(s)- 
Desired Output(s) 

' If 

Comparer 

Adjust Weights 

Figure 9. Typical neural network training scheme. 

Unfortunately, traditional training algorithms cannot be used for most 
physiological control system identification problems. This is because some or all of the 
control system output variables cannot be measured and thus cannot be used in 
computing the error term. In the training procedure used here, the error term is defined 
as the squared difference between "observed" and "predicted" values for any variables 
that are both predicted by the hybrid model and measurable or observable. For 
example, in the robot arm systems, A, V and Tare predicted variables. If Tis not 
measurable then the sum of squared differences between predicted and observed 
values of A and/or V may serve as the error term. Note that A and V are inputs, not 
outputs to the neural network control system. Neural network weights are initially set at 
random values between -1.0 and 1.0, and are then adjusted to minimize the error term, 
using an iterative random descent method. Figure 6 shows the training scheme for the 
2-link robot arm model when Ai and A2 are the variables used in the error term. 



'observed' 
data (A,, A2) Data Compare 

'predicted' data (A,, A2) 

network 
weight changes 

Control System 
'effector' 
variables 
(Tl5T2), 

Passive System 

dkydt^, 
dV,/dt=10sinAr2V1+T, 

dV2/dt=0.9*T2-1.5*V2-0.05*A2 

'controlled' variables (At, A2 Vy, V2) 

Figure 10. Schematic of the hybrid model architecture and 
training scheme for the 2-link robot arm model. 

IMPLEMENTATION 
Computer software code was developed in the C/C++ programming language for 

implementing and training the hybrid mathematical/neural network model. The first of 
three software modules contains the code for implementing and training the neural 
network. The second module contains the subroutines for generating random numbers 
(9). Three other modules consist of the passive system models and other code specific 
to the four artificial (model) systems. 

SOFTWARE VALIDATION 
The software was validated by attempting to simulate the water bath system with 

the nested hyperbolic tangent control system functions (Figure 4). This artificial system 
was developed specifically for validation purposes because a trained neural network 
with a single middle or hidden layer processing element should simulate this system 
exactly. Moreover, the trained network weights should agree with the actual control 
system parameter values. 

HYBRID MODEL TESTING 

The most appropriate neural network architecture (i.e., most appropriate number 
of hidden layer nodes) for any control system identification problem is unknown at the 
start and must be determined through repeated neural network training, utilizing 
different numbers of hidden layer nodes. The most appropriate number of hidden layer 
nodes was determined, somewhat subjectively, based on the convergence and rate of 
convergence of the error term toward zero, and by the apparent existence of "local 
minima" in the solution space. 

Once the most appropriate number of hidden layer nodes was identified, three or 
more training sessions were conducted. Each training session was started using a 



different (random) set of initial network weights. Observed control system input-output 
relationships were then compared with input-output relationships from the neural 
network. Comparisons were made to determine the accuracy of the predicted input- 
output relationships, and also the repeatability of the hybrid model system training 
method (i.e., the ability for each training session to reach the same solution). 
These comparisons were then repeated under two conditions to determine the 
robustness of the method: 1) a random 10% error in "observed" data (error values 
randomly selected from a Gaussian distribution with +/-10% variance); and 2) a 
random 10% error in passive system model parameter values (error values randomly 
selected from a Gaussian distribution with +/-10% variance). 

Finally, tests were conducted to determine the ability of the hybrid model'to' 
identify the control system using incomplete data sets. Although it is possible using 
artificial systems to "know" or "measure" the responses of all control system input and 
output variables, this is certainly not the case for most physiological systems. For this 
test, variables were dropped from the set of observed data and the tests repeated (e.g., 
for the 2-link robot arm model, all variables except Ai and A2 are excluded from the set 
"observed" data). 

RESULTS 

LESSONS LEARNED 
For each control system identification problem, simulations were conducted 

using different numbers of middle-layer nodes, and different sets of variables included 
in the "observed" data set. Each simulation was repeated 3 times (denoted as Tests 1, 
2, and 3), starting at different random initial weights each time. It was necessary to 
normalize observed and predicted data so that the training would not be biased toward 
variables that take on larger values. It was also necessary to normalize neural network 
inputs and outputs so that each variable carried the same degree of "importance" in 
network training. In addition, the training data set had to induce a sufficiently broad 
range of system responses so as to get a reproducible set of control system input- 
output relationships. For example, for the linear water bath system, it was necessary to 
train under both hot (Ta above normal) and cold (Ta below normal) conditions. 

NUMBER OF HIDDEN-LAYER NODES 
Figure 11 shows the results from simulations of the 2-link robot arm model when 

the variable A was the only variable in the error term. This case was selected because 
the 2-link robot arm model includes a nonlinear, multivariate controller, and because A 
represents only a third of the available system variables and is not a control system 
output (i.e., traditional neural network training methods could not be used). The error 
term at each training iteration is plotted against the number of middle-layer nodes. 
When only a single middle-layer node was used, the neural network did not train. Use 
of 2 or 3 middle-layer nodes consistently resulted in satisfactory training (i.e., error 
values converged rapidly to some small, minimum value). Results of the second test 
demonstrate that the use of 4, 5, 7, or 8 middle-layer nodes may result in poor training 

10 



performance, possibly due to local minima or saddle points in the solution space. Thus, 
the training progression is as important as the absolute error value at the end of a 
certain number of iterations in evaluating the network system architecture. In contrast 
to the 2-link robot arm model, the linear water bath and single-link robot arm models 
required only 2 hidden nodes. Also, there was no evidence of local minima or saddle 
points with larger numbers of hidden nodes for these systems. 

# Hidden Nodes TEST1 # Hidden Nodes TEST 2 

# Training Loops 

# Hidden Nodes 

It Training 

Figure 11. Results from simulations of the 2-link robot arm model when the 
variables A, and A2, over 8 experiments, were included in the set of observed 
data. The error term at each training iteration is plotted against the number of 
middle layer nodes. 

CONTROL SYSTEM INPUT-OUTPUT RELATIONSHIPS 
Figure 12 shows the results for the 2-link robot arm when 3 hidden layer neural network 
nodes were used. The graphs in the upper right area show the total error for each test 
and the distribution of error values across the experiments in the data set. The 
remainder of the plots show the actual (i.e., generated by the artificial system with 
known control system) and predicted relationships between pairs of control system 

11 



input and output variables. There was some scatter among the curves generated 
during the 3 different tests, although this did not significantly effect predicted values. 

Input Variables: Al, VI, A2. V2 
Output Variables: Tl, T2 
# Hidden Nodes: 3 
"Observed Variables: Al, A2 
Special Conditions: None 

1: 

Total Error, by T**t 

■             _ 1    ■    H ■    ■    ■ 15: llllllll 

— Tittl 
— T»it2 
— T«it3 
■»■ Actml 

T2 v*. A1 

-•-Ttitf 

" 
■—T»it2 
•--Tiit3 
-—Aetu»! 

0.2 

■S ;—  
■°>                            *.l ..• 

*•'* 
■0.1 

— T»tu 
—'T«tl2 
— T«it3 

T2 V a. V2 

» 
—-Ttiti 

— T.«I3 
— Actuil 

z 

Figure 12. Input-output relationships from the 2-link robot arm model. 

EFFECT OF RANDOM ERRORS IN OBSERVED DATA 
As one test of the hybrid model's robustness, random errors selected from a Gaussian 
distribution with ±10% variance were added to the observed data set. The hybrid 
models were re-fit to observed data 3 times, starting at different initial (random) neural 
network weights each time. Figure 13 shows the effect of purposefully inducing errors 
into the observed data for the 2-link robot arm model. Visually, there is little difference 
from Figure 12. The greatest scatter among curves from the three tests occurred for 
the relationships T^ vs. A2, Ti vs. V2, T2 vs. A1( and T2 vs. VL In each case, the plot 
generated during Test 2 differed somewhat from plots generated during the other tests. 

12 



Input Variables: Al, VI, A2, V2 
Output Variables: Tl, T2 
# Hidden Nodes: 3 
"Observed Variables: Al, A2 
Special Conditions: +/- 10% Error in Passive 

System Parameter Values 
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Figure 13. Input-output relationships from the 2-link robot arm model when 
random ±10% errors are introduced into the set of "observed" data. 

EFFECT OF RANDOM ERRORS IN PASSIVE SYSTEM PARAMETER VALUES 
In the simulation of artificial systems, described here, the same passive system model 
is used for both the artificial and the hybrid model systems. The mathematical model 
representing the passive components of a physiological system is certain to contain 
errors because the model is, by necessity, much simpler than the real system. Also, 
there may be gross errors in the passive system model parameter values because of 
differences between individuals or because of some time-dependence of the parameter 
value(s) which is not accounted for. As another test of the model's robustness, random 
errors selected from a Gaussian distribution with ±10% variance were added to the 
passive system parameter values (Figure 14). Induced errors in passive system 
parameters resulted in input-output plots that are qualitatively similar to those shown in 
Figure 12, which did not include induced errors. 
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Input Variables: Al, VI, A2, V2 
Output Variables: Tl, T2 
# Hidden Nodes: 3 
"Observed Variables: Al, A2 
Special Conditions: None 
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Figure 14. Input-output relationships from the 2-link robot arm model when 
random ±10% errors are introduced into the passive system parameter values. 

DISCUSSION 

The work performed in this project demonstrates the ability of the hybrid 
mathematical/neural network model to accurately simulate the responses of simple 
artificial linear and nonlinear control systems. It was possible to successfully simulate 
the artificial systems when one or more of the system variables was excluded from the 
observed (training) data set. In the 2-link robot arm example, only 2 of the 6 system 
variables were assumed to be observable and included in the error term. The number 
of middle-layer nodes (2 or 3) that were required for these control system identification 
problems was relatively small. The methodology also appears to be robust. In this 
preliminary work, the hybrid model successfully simulated the artificial systems under 
conditions in which the observed data were subjected to random error (Gaussian 
distribution with ± 10% variance) and also when passive system parameter values were 
subject to random error (Gaussian distribution with ± 10% variance). The control 
system input-output relationships generated during one of the tests occasionally 
differed markedly from the "actual" control system relationship, and from the 
relationships predicted during the other 2 tests. Therefore, when identifying unknown 
control systems, it may be necessary to run the neural network training procedure 
multiple times to identify and reject input-output relationships which are "outliers." 
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The results from this study using artificial systems is encouraging in terms of the 
potential use of this methodology for the study of physiological systems. Physiological 
systems are adaptive, the control systems are quantitatively unknown, and control 
system outputs are frequently inaccessible for measurement, precluding the use of 
more traditional methods. Also, errors can be expected both in measured data as well 
as in parameter value estimates in even the most complete mathematical models. A 
reasonable next step would be to use a neural network to model a physiological control 
system in which the inputs and outputs are accessible for measurement. The results of 
this parameter optimization could be compared directly with results from statistical 
model fitting procedures. The next step would be to utilize a hybrid neural network/ 
mathematical model of the entire system and to repeat the model fitting procedure 
using variables other than the control system outputs in the error term. 
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